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The Orders of Approximation of the First Derivative 
of Cubic Splines at the Knots 

By D. Kershaw 

Abstract. The order of approximation of the first derivative of four types of interpolating 
cubic splines are found. The splines are defined by a variety of endpoint conditions and 
include the natural cubic spline and the periodic cubic spline. It is found that for two types 
there is an increase in the order of approximation when equal intervals are used, and that 
for a special distribution of knots the same order can be realized for the natural spline. 

1. Introduction. The cubic spline is now a well established tool for smooth 
interpolation in a table of a function defined at a discrete set of points. A useful 
account of the basic properties of this spline and an algorithm for constructing it 
can be found in [1], and an analysis of the convergence of the spline to the function 
it interpolates is given in [4]. 

The present paper is devoted to an investigation of the problem of finding how 
well the first derivative, taken at the knots, of the spline approximates the first deriva- 
tive of the interpolated function there. It was shown in [4] that there is 0(h') ap- 
proximation uniformly over the range of the knots, as the maximum interval tends 
to zero, but as it is often the case that the derivative is taken at the knots, it is felt 
that the results may be of some value. 

2. Notation. The set of real numbers, t, t I, , tN, will be called knots and will 
satisfy 

- co < to < ti < ... < tar-lI < tN < co, N 2~ 2. 

The interval t; ? t 9 t,+1 will have length hi = ti+1 - t,, i = O(l)N - 1, and the 
maximum interval length will be h, that is, 

h= max h,. 
OSiSN-1 

y will denote a cubic spline with the above knots. As stated in Section 1, more than 
one kind of spline will be considered but they will have the common property that 
each is a member of C2(- Co, co) and that in each interval they are polynomials of 
degree at most three. 

x will be a member of C'[to, t,] and will be the function with which the spline 
agrees at the knots. For brevity, define 

r) = (dt)rx(t), for t = ti, I = O(l)N, r = 0(1)5. 
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Then 

Y= xi, i = O(1)N. 

The norms which will be used are the uniform norms for functions, vectors and 
matrices, namely, 

IlxII = max Ix(t)l, IlXiI = max lxil, IIAII = max ? lail. 
OSt tN I $fi i 

The domain of the suffixes in the vector and matrix norms will be clear from the 
context. 

It is convenient to define here 

M4 = lX(4)II, M5 = Illx(5) . 

The first and last columns of the (n + 1) X (n + 1) unit matrix will be written re- 
spectively as e0, e,; the jth element of the vector x will be denoted by [x]f. 

3. The Cubic Splines. Four types of cubic splines will be described in this 
section. Cubic splines are usually characterized by the value of their second deriva- 
tive at each of the knots (see for example [ID, but for the purpose of this note, an 
alternative method will be used. 

Let 

Xi = A"l i = 0(1) N, 

then, if y(t) takes the same value as x(t) at each of the knots, it follows from Hermite's 
two point interpolation formula that, for t; 5 t ? ti+1, 

y(t) = [3(th ) -x2(ts;-t)3]xi + [3( h ') 2Q h i)1]x,+1 

+ {ti+1~ t)2 - ti+1- t)3] h{t (t ti ) ]x- tj 
[( hi ) 

Xi - 
]ih;[ h 

0 
tt)] 

I = O(1)N - 1. 

A simple calculation shows that 

(2) hiyi = 6(xi+l - x,) - h,(4Xi + 2Xi+l), 

hiy 2) = -6(x,+l - x,) + hi(2X, + 4Xi+1). 

Now, as y E C2(_a, ac), the two expressions for y(2) from the equations which 
arise from the intervals (to-1, tJ, (ti, ti+) must be equal. The identification gives 
the equations: 

(3) Xi-,+2+ 2Xi+X+1 2[x+i+,X3+xi+ - Xi Xi xi-1l i()N 1. 
hh h+ h 21J 

It is convenient to define 

= h_11/(h,_1 + hi), 

then the equations become 
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(1 -ai)Xi-l + 2Xi + aiXi+l = 3[j (xa+i - i) + (1 -a,) (i i- 

i = l(1)N 1, 

which can be written as 

(1 -ai(X;_lx!'~,) + 2(As - xl) + axi(A.i+l - x9+) 
(1 - aj(X,1 - ) (hi)+1X -Xi) )Xia1(XXi- 

=-(1 - aJx1 - 2x1) - aix + 3[ai (xa +1- X;) + ( -ai) h , 

I = 1(1)N - 1. 

Finally, the use of Peano's method for finding remainders gives the result that 

(1 - (ai7i-l - x(_)) + 2(Xi - xi ) + ai(Xi+l - x$+1) 

(4) = hj..h (hi-, - h i)X4) 
- 6 hhi1hj2_ + h2 - hjhj)x?)(r;), 

where til ,< ri < ti+1, i = l(l)N - 1. 
The sets of Eqs. (3), (4) are satisfied by X., X1, - * *, Xy for each of the splines to 

be considered. Clearly, two further relations are needed in order that a unique in- 
terpolating spline may be found. The equations (3) are the useful ones for the actual 
calculation of the splines and, for completeness, the two relations to be adjoined to 
(3) will be given for the different types of spines to be described. For this note, 
however, (4) are the useful equations and these relations will have to be written in a 
form similar to (4). 

(A) Natural Cubic Spline. The relations which help to define this spline are (1] 

(2) = y(2) = __ 

whence, from (2), the equations additional to (3) are 

3 
2Xo + X1 = -(X1 -Xo) 

(5a) ho 

k.N-1 + 2XN = (XN - XN.1). 
hN-l 

With the aid of Peano's method these can be written 

-(X x1)+(- x x(1) 
I 
hox (2) - 3X -4 h4() 0(\-o ) )+ (xil- XI ') =2oo) -2 0oo ' -1 hox( r>(o), 2 _ 24 0 60 

(5b) to <7-T0 ti, and 

(XN- N - 2)) + + - _ 13 -X(2) + k h4 X(5) (r ) (XN-1 -x (1 1)+ 2(N X 2hNlXN 24 
N 

60N 

tN-r1 ? TN ? tNY 

These equations together with (4) are, in matrix form, 
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r2 1 0 ... 0 

[ -a, 2 a, .. 0 
(5c) . . ... . (I _ CM) 

(2) (4) (2) 

2~~~~1X 14 
(4) 

*+jX (51) 2 ho[X - F2 hxO]eo - 2 h - 12 h (X4) JeN + X + X 

where 

(d) = 1 x 
(41). (0hh(0 XI xil xj2 Of, 

(5d) =() 24 [? hohl(ho hl)xl4 ... hN-2hN-i(hff-2 - hw-X)NI 

(5e) x ' = -j60 [ho4x( (ro) hohl(ho + hi - hOhI)x 5)(7i) .. *hN- x(S)(rN)]T . 

(B) Cubic Spline DI. Here, yol) and YN() are fitted exactly, and so 

(6a) X0 = x , XN- XN 

are the equations to be put with (3) for the calculation of this spline. Further, (4) 
can now be written as 

2 al 0 ... 0 0 

(6b) [-i 2 a2 2 1. - O = (4) + X () 

_ 0 0 Oa* 1- r-I 2_ 

where 

- (1) R I*1 - XN_ 1 .. 

(6c) tX(4) = (hoh1(ho - h1)x(4) ... hN_2h- v-(hv-2 - 
h(-)Xk]- 

x = --[hoh, (ho + hi - hehl)x (5)(Tr) 
(6d) 

... hN-2hN-l(h2-2 + h2 N- hNj2N-l)x)(TrN_1)]T. 

(C) Cubic Spline D2. If 
(2) = X(2) (2) (2) 

YO X0 , YN XN, 

then, from (2), the equations additional to (3) are 

3 2 
2Xo + X1 = (xi - Xo) -hOxO 

(7) 

XN-I + 2XN = (N x XN_1) + hN-lXN 
PN-et gs r 

Peano's theorem gives the results 
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2()X -x"'l) + (X1 - )) = -kx hx4- h () 24 0 60 

(XNI - X1I) + 2(XN - x4") = 24 hN-I 
_ - 60 hx() XN- N N ~~~~~60 N. rX(T). 

On comparison with the corresponding ones for the cubic spline, namely (5b), it is 
seen that the matrix equation for this spline is identical with (5c) except that the 
terms XO2) and xN2) are replaced by zero. 

(D) Periodic Cubic Spline. When x has period t4-to and 4et) = x ), r = 0, IV 
then the spline can be taken to be periodic in the sense that 

(8a) yOV) = ye, r = 0, 1, 2. 

The Eqs. (3) remain valid but in the first X0, xo can be replaced by XAN, XN, respectively. 
An additional equation arises from the observation that y(2) = Y() and is, after 
simplification, 

(8b) ,A + (I 3)wN-I + 2XN = r___ _+ (I ( - )] 

In the required form, this is 

X - Xl ) + (1 - )(AN-1 - x421 ) + 2(XN - XXN) 

(8c) o)X4) -61 - h2h0)x f) 
-hN-lho(hN-1 - h o - To hN..1h0QhN. + hohkg h~ r ~24 6 - 

where jB = hN.l/(ho + hNl), and to- hNau I Ir 5 tl. 
Thus, the matrix equation is 

2 al 0 ... 0 1 -a, 

(8d) 1 -a2 2 a2 .. 0 0 (X X ; 

0 0 .. . I 2 . 

where 
X x (1 ) 

=[XI _Xi(1) XN -XN]X 

(8e) x(4) = 1 [hohl(ho -hI)x4... hN-lho(hN-l-ho)xN(4 

X = -6 (hoh1(ho + h2 - hohl)x(5)(ri) 
(80) 

-v -lho(hN-l + hok hNelho)x(f)(7r)J. 

4. Error in the First Derivatives of the Splines at the Knots. It will be no. 
ticed that the matrices which occurred in Section 3 for each of the splines are strictly 
diagonally dominant, and so the equations can be solved. Further, if A represents 
any of them then, with the uniform norm I1A-I I I 1. This follows from the observa- 
tion that if 11Axj/ 2 1 for IJxjj - 1, then j/A-` j 5 1. Now, A 2= + B. 
where jIB/I ? 1 and so IjAxjI ! 2/11xll - /IBxl and, as //Bxjj 5 jIB/I : 1, the result 
is proved. 
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THEOREM 1. If y is either a cubic spline D1 or a periodic cubic spline, then 

(9) 1II - x(l) II ? g 1*2 max Ihj - hi I i M4 + 60 h4M5. 
24 60 

Proof. In (6b) and (8d), multiply by the inverse of the respective matrices, and 
take the uniform norm of each side. Then, 

I1lx _ X(1)l < 11 : X(4) 11 + I IX(6) I 1 

where X s, x () are defined by (6c), (6d) for the Dl spline and by (8e), (8f) for the 
periodic spline. 

The results now follow on taking the uniform norms of I'd, x'5. 
COROLLARY. If h, = h, i = O(1)N - 1, then, if y is either a cubic spline DI or a 

periodic cubic spline, then 

(10) II - X()II 6 h 4M5. 

The remaining types of splines will be taken together as the analysis is common 
to them both. The equations for the natural cubic spline are given by (5c). Denote 
by A the matrix. Then, after multiplying (5c) by A1 it will easily be seen that 

lXi- x | I ho[Cl + ho DI] I[A-'eo]sI + hNv.[C2 + h ..1 D2] I(A eNvjI 

(11) + i4 h2max 1hi-h-hiI M4+ 6h4M5o j = O(1)N, 

where 

Cl=2 0x l, C2 =2 1XN I . D, = 24 IXO |I D 24 IXNI 1 

The corresponding inequalities for the cubic spline D2 are found by putting C1 = 
C2 = Oin (11) and are 

lxi - x I < ho D1 I[A eo],I 
(12) + h3 1 D2 I[A-1eN]jl + 

I 
h2 max -hi- hi1 M4 + 

I 
h4M5. 

Clearly, the nonvanishing of the multipliers of [if 1e0]1, [A-'eN], have an adverse 
effect on the approximations in (12) when the intervals are equal, and for the natural 
spline this is apparently disastrous, even when the intervals are equal. But, on ex- 
amination, it is seen that to increase the order of approximation in both cases it is 
necessary only to make the first and last intervals small enough. The situations can 
be saved a little in the general case of unequal intervals as shown in the following 
theorems. 

THEOREM 2. If y is a natural cubic spline, h < 1 and if N 2 2 - 2r log h/log a, 
there exist integers p, q, 0 < p < q < N., such that, for p ! j < q, 

-XS -x1l)1I < hohr[Cl + ho DI] + IhN-lh7[C2 + h2-1 D2] 

+ h max hihI - hi1IM4+ i- h4M5, 24 6 0 
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where the real number a is 
(i) 2 + a/3 if h, = h, 

(ii) 2 when the intervals are unequal. 
Also 

t- to < h[l -r log h/log a], tN- t. < h[l -r log h/log a]. 

Proof. This depends on results from [2], where it is shown that for equal intervals 

I[A-'eo]11 = UN-j(2)/ UN+1(2), I[A'eN]iI = Uj(2)/ UN+1(2), j = O(1)N, 

and from [3], where it is shown that when the intervals are not equal 

j[Aleo]ll < 2 2-N I[A eN]|I ? i 2-; 

Now, 

U,(2) (2 + V/3)' - (2 - A/3) AX iN-I 

UN+1(2) =(2 + V%3)+ -(2 - V/3)N2<( 3N, =O1N 

and similarly, 

UN-;(2)/ UN+1(2) < (2 + A/3) , i = O(1)N. 

Hence, (11) can be replaced by 

- 1- ) I ho[CI 
+ ho 

DI]a-' 
+ 

hN-I[C2 
+ he21 D2]ai-N-l 

(13) + h2 max fhi_1-hi h M4+ 6h5M5, = O(1)N, 
24 ' 60 

where a = 2 + x/3 if hi = h and a = 2 otherwise. 
(For simplicity of presentation, the factor 2 which should occur in these inequali- 

ties when a = 2 and the factor 2 - /3 when a = 2 + x/3 have been replaced by 
unity.) 

As a > 1, it follows that a-' decreases with increasing j, and so a-' ? hr for all 
j _ p where the integer p satisfies a-' < hr < a-"+l, that is 

-r log h/log a < p < 1 - r log h/log a. 

Similarly, a i-N ? hr for all j < q where the integer q satisfies 

N- 1 + r log h/log a < q < N + r log h/log a. 

In order that p < q, it is sufficient that 

N - 1 - r log h/log a - 1 -r log h/log a _ 0 

which is equivalent to 

N _ 2 - 2r log h/log a. 

It remains to note that 

t- to ? ph < h[l - r log h/log a], 

tN - ta ? (N - q)h < h[l - r log h/log a]. 
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(The inequality N _ 2 - 2r log h/log a will be satisfied for sufficiently large N as 
Nh t - to.) 

COROLLARY. If y is a cubic spline (D2), h < 1 and if N 2 - 2r log h/log a then 
there exist integers p, q, 0 < p < q < N such that, for p < j < q, 

2 1 3 r2 1 M -41)l <3 hghr D, + 3 h3 hr D2 + 24 h2 max -h2lM, + 60 

where a is 
(i) 2 + \/3 if hi = h9 

(ii) 2 when the intervals are unequal. 
Also 

t- to < h[l - r log h/log a], tN - t 1 < h[l -r log h/log a]. 

Proof. This follows from Theorem 2 on setting C1 = C, = 0. 

Conclusions. The approximation of the first derivative at the knots is best when 
equal intervals are used both for the cubic spline Dl and the periodic cubic spline. 
In each case, the approximation is 0(h4). When unequal intervals are used, it drops 
to 0(h3). For the cubic spline D2, the order is generally 0(h') whether the intervals 
are equal or not, but with equal intervals and for a large enough number of points, 
the order is 0(h4) at a number of internal knots. 

The first derivative of the natural cubic spline is only an 0(h) approximation to 
the first derivative of the interpolated function at the knots, although for a suffi- 
ciently large number of knots the order can be made 0(h') or 0(h') at a range of 
internal points if the intervals are respectively unequal or equal. 

Similar theorems can be proved for other types of cubic splines with mixed end 
conditions. It is worth remarking that if one end only is 'natural', for example yN2' = 0, 
then the effect of this on the approximation will decrease rapidly as this point is left 
(by a factor of 2 - /3 for equal intervals and 0.5 for unequal intervals). 

Department of Computer Science 
University of Edinburgh 
Edinburgh, Scotland 

1. T. N. E. GREVILLE, "Spline functions, interpolation, and numerical quadrature," in 
Mathematical Methods for Digital Computers. Vol. 2, A. Ralston and H. S. Wilf (Editors), 
Wiley, New York, 1967. MR 35 #2516. 

2. D. KERSHAW, "The explicit inverses of two commonly occurring matrices," Math. 
Comp., v. 23, 1969, pp. 189-191. MR 38 #6754. 

3. D. KERSHAW, "Inequalities on the elements of the inverse of a certain tridiagonal 
matrix," Math. Comp., v. 24, 1970, 155-158. MR 41 #2907. 

4. D. KERSHAW, "A note on the convergence of interpolatory cubic splines," SIAM J. 
Numer. Anal., v. 8, 1971, pp. 67-74. 


